Second order differential equations

Peyam Tabrizian

Friday, November 4th, 2011

This handout is meant to give you a couple more example of all the techniques discussed in chapter 4, to counterbalance all the dry theory and complicated applications in the differential equations book! Enjoy! :)

1 Homogeneous equations

1.1 Distinct roots: Solve $y^{\prime \prime}-5 y^{\prime}+6 y=0$

The auxiliary polynomial is $r^{2}-5 r+6=(r-2)(r-3)$, which has zeros $r=2,3$.

$$
y(t)=A e^{2 t}+B e^{3 t}
$$

1.2 Complex roots: Solve $y^{\prime \prime}-8 y^{\prime}+25 y=0$

Aux: $r^{2}-8 r+25=0$, which gives $r=\frac{8 \pm \sqrt{-36}}{2}=4 \pm 3 i$ (use the quadratic formula).

$$
y(t)=A e^{4 t} \cos (3 t)+B e^{4 t} \sin (3 t)
$$

1.3 Repeated roots: Solve $y^{\prime \prime}-4 y^{\prime}+4 y=0$

Aux: $r^{2}-4 r+4=(r-2)^{2}=0$, which gives $r=2$, a root with multiplicity 2 . Hence:

$$
y(t)=A e^{2 t}+B t e^{2 t}
$$

2 Undetermined coefficients

2.1 Solve $y^{\prime \prime}-5 y^{\prime}+6 y=e^{t}$

The general solution is $y(t)=y_{0}(t)+y_{p}(t)$, where:

- $y_{0}(t)$ is the general solution to $y^{\prime \prime}-5 y^{\prime}+6 y=0$
- $y_{p}(t)$ is one particular solution to $y^{\prime \prime}-5 y^{\prime}+6 y=e^{t}$

On the previous page, we found $y_{0}(t)=A e^{2 t}+B e^{3 t}$
To find y_{p}, in this example guess y_{p} has the form $y_{p}(t)=A e^{t}$, and plug this back into the original equation, you get:

$$
\begin{gathered}
\left(A e^{t}\right)^{\prime \prime}-5\left(A e^{t}\right)^{\prime}+6\left(A e^{t}\right)=e^{t} \\
2 A e^{t}=e^{t} \\
2 A=1
\end{gathered}
$$

Hence $A=\frac{1}{2}$, and $y_{p}(t)=\frac{1}{2} e^{t}$.
So the general solution to $y^{\prime \prime}-5 y^{\prime}+6 y=e^{t}$ is:

$$
y(t)=y_{0}(t)+y_{p}(t)=A e^{2 t}+B e^{3 t}+\frac{1}{2} e^{t}
$$

2.2 How to guess the form of y_{p}

The main idea is: Always try the most complicated case you can think of!

2.2.1 $y^{\prime \prime}-2 y^{\prime}+y=t^{3} e^{2 t} \cos (4 t)$

Aux: $r^{2}-2 r+1=(r-1)^{2}=0$, so $r=1$.
Here you have to guess:

$$
y_{p}(t)=\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \cos (4 t)+\left(A^{\prime} t^{3}+B^{\prime} t^{2}+C^{\prime} t+D^{\prime}\right) e^{2 t} \sin (4 t)
$$

Note that we have a double root, but here it doesn't matter because the right hand side doesn't involve e^{t}

2.2.2 $y^{\prime \prime}-3 y^{\prime}+2 y=t^{2} e^{t}$

Aux: $r^{2}-3 r+2=(r-1)(r-2)=0$, which gives $r=1,2$.
Here, one of the roots coincides with the right-hand-side, so we have to add an extra t in our solution:

$$
y_{p}(t)=t\left(A t^{2}+B t+C\right) e^{t}
$$

Note: If we had $e^{4 t}$ instead of e^{t}, we wouldn't need to add that t.
2.2.3 $y^{\prime \prime}-2 y^{\prime}+y=e^{t}$

Aux: $r^{2}-2 r+1=(r-1)^{2}=0$, which gives $r=1$
Here we really have the worst-case scenario: A double root which coincides with the right hand side, so we have to add a factor of t^{2} in our solution!

$$
y_{p}(t)=A t^{2} e^{t}
$$

2.2.4 $y^{\prime \prime}-8 y^{\prime}+25 y=e^{4 t} \cos (3 t)$

Aux: The roots are $r=4 \pm 3 i$ (see above)
The root $4+3 i$ coincides with the $e^{4 t} \cos (3 t)$ factor, so we have to add an extra factor of t :

$$
y_{p}(t)=A t e^{4 t} \cos (3 t)+B t e^{4 t} \sin (3 t)
$$

That t factor wouldn't be present if we had $e^{5 t} \cos (3 t)$ on the right-hand-side, or even just $\cos (3 t)$.

3 Superposition principle

3.1 Solve $y^{\prime \prime}+y=e^{t}+\cos (t)+t$

This just says that to find a particular solution y_{p} to this equation, just find particular solutions y_{1}, y_{2}, y_{3} to the equations:

$$
\begin{gathered}
y^{\prime \prime}+y=e^{t} \\
y^{\prime \prime}+y=\cos (t) \\
y^{\prime \prime}+y=t
\end{gathered}
$$

And add them together to get $y_{p}(t)=y_{1}(t)+y_{2}(t)+y_{3}(t)$

4 Variation of parameters

4.1 Solve $y^{\prime \prime}+y=\tan ^{2}(t)$

First of all, make sure that the coefficient of $y^{\prime \prime}$ is 1 . (for example, if the equation was $2 y^{\prime \prime}+2 y=2 \tan ^{2}(t)$, we would divide the equation by 2)

Now $y(t)=y_{0}(t)+y_{p}(t)$ as usual, where $y_{0}(t)=A \cos (t)+B \sin (t)$ (the roots of the aux polynomial are $r= \pm i$)

To find y_{p}, use the method of Variation of parameters
Suppose $y_{p}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)$ (where v_{1} and v_{2} are functions)
Let $f(t)=\cos (t)$ and $g(t)=\sin (t)$ (the solutions to the hom. equation), and let:

$$
\widetilde{W}(t)=\left[\begin{array}{cc}
f(t) & g(t) \\
f^{\prime}(t) & g^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
\cos (t) & \sin (t) \\
-\sin (t) & \cos (t)
\end{array}\right]
$$

Now solve:

$$
\widetilde{W}(t)\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\tan ^{2}(t)
\end{array}\right]
$$

Note: The first row of the RHS is always 0 , and the second row is always the inhomogeneous term.

$$
\left[\begin{array}{l}
v_{1}^{\prime}(t) \\
v_{2}^{\prime}(t)
\end{array}\right]=(\widetilde{W}(t))^{-1}\left[\begin{array}{c}
0 \\
\tan ^{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{c}
0 \\
\tan ^{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\sin (t) \tan ^{2}(t) \\
\cos (t) \tan ^{2}(t)
\end{array}\right]
$$

Where I have used the formula:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Hence, we get:

$$
\begin{gathered}
v_{1}^{\prime}(t)=-\sin (t) \tan ^{2}(t)=-\frac{\sin ^{3}(t)}{\cos ^{2}(t)} \\
v_{2}^{\prime}(t)=\cos (t) \tan ^{2}(t)=\frac{\sin ^{2}(t)}{\cos (t)}
\end{gathered}
$$

So:

$$
\begin{gathered}
v_{1}(t)=\int-\frac{\sin ^{3}(t)}{\cos ^{2}(t)} d t=-\cos (t)-\sec (t) \\
v_{2}(t)=\int \frac{\sin ^{2}(t)}{\cos (t)} d t=\ln |\sec (t)+\tan (t)|-\sin (t)
\end{gathered}
$$

Note: It's OK to use your calculator or Wolfram Alpha to evaluate those integrals!

Hence, putting everything together, we get:
$y_{p}(t)=v_{1}(t) \cos (t)+v_{2}(t) \sin (t)=(-\cos (t)-\sec (t)) \cos (t)+(\ln |\sec (t)+\tan (t)|-\sin (t)) \sin (t)$

$$
y_{p}(t)=-2+\ln |\sec (t)+\tan (t)| \sin (t)
$$

Whence:

$$
y(t)=y_{0}(t)+y_{p}(t)=A \cos (t)+B \sin (t)+-2+\ln |\sec (t)+\tan (t)| \sin (t)
$$

